Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 814755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154227

RESUMO

Salinity is a major constraint to crop growth and productivity, limiting sustainable agriculture production. Planting canola (Brassica napus L.) variety with salinity-alkalinity tolerance as a green manure on the large area of salinity-affected land in Xinjiang could alleviate feed shortage. To investigate the differential effects of neutral and alkaline salt stress on seed germination and seedling growth of canola, we used two salts at varying concentrations, i.e., NaCl (neutral salt at 100, 150, and 200 mM) and Na2CO3 (alkaline salt at 20, 30, and 40 mM). To further explore the effects of Na+ and pH on seed germination, we included combined of NaCl (0, 100, 150, and 200 mM) and pH (7.1, 8.0, 9.0, 10.0, and 11.0). Shoot growth was promoted by low concentrations of NaCl and Na2CO3 but inhibited at high salt concentrations. Given the same Na+ concentration, Na2CO3 inhibited seed germination and seedling growth more than NaCl. The results showed that the main factor affecting seed germination and seedling growth is not pH alone, but the interaction between pH and salt ions. Under NaCl stress, canola increased the absorption of K+, Ca2+, and Mg2+ in roots and K+ in leaves. However, under Na2CO3 stress, canola maintained a high K+ concentration and K+/Na+ ratio in leaves and increased Ca2+ and Mg2+ in roots. Our study showed that alkaline salts inhibit canola seed germination and seedling growth more significantly than neutral salts and salt species, salt concentration, and pH significantly affected on seed germination and seedling growth. However, pH affected seed germination and seedling growth mainly through an interaction with salt ions.

2.
Mater Sci Eng C Mater Biol Appl ; 120: 111669, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545834

RESUMO

Hydroxyapatite (HA) is the main inorganic component of bone and dentin, and their non-stoichiometric compositions and plate-shaped morphology is responsible for their bioactivity and osteoconductive nature. Collagenous (CPs) and non-collagenous proteins (NCPs) facilitate mineralization and regulate structural properties of HA through their side-chains. The bioactivity of synthetic HA does not usually match with the HA found in bone and, therefore, there is a need to understand the role of biomolecules in bone mineralization in order to develop non-stoichiometric plate-shaped HA for bone grafts. Role of several amino acids has been investigated but the role of L-his has been rarely investigated under physiological conditions even though it is a part of HA inhibitor proteins, like albumin, amelogenin, and histidine-rich proteins. In this study, L-his and L-glu were used to modify the structural properties of HA in different experimental conditions and buffer systems (tris and hepes). The results showed that L-his was able to regulate the plate-shaped morphology of HA in every experimental condition, unlike the L-glu, where the crystal morphology was regulated by experimental conditions. Both amino acids behaved differently in DI water, tris, and hepes buffer, and the media used influenced the precipitation time and structural properties of HA. Hepes and tris buffers also influenced the HA precipitation process. Overall, the studies revealed that L-his may be used as an effective regulator of plate-shaped morphology of HA, instead of large NCPs/proteins, for designing biomaterials for bone regeneration applications and the choice of buffer system is important in designing and evaluating the systems for mineralization. In cell culture studies, mouse osteoblast precursor cells (MC3T3-E1) showed highest proliferation on the bone-like plate-shaped HA, among all the HA samples investigated.


Assuntos
Durapatita , Histidina , Animais , Regeneração Óssea , Osso e Ossos , Calcificação Fisiológica , Camundongos , Osteoblastos
3.
J Chromatogr A ; 1602: 397-408, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31285058

RESUMO

In reversed-phase liquid chromatography, the performance for basic compounds is affected by the interaction of the protonated (cationic) species with the anionic free silanols on the alkyl-bonded stationary phases. Using aqueous-organic mobile phases in the absence of additives, the retention may be too high, and the peaks be broad and asymmetric. The performance is improved by addition to the mobile phase of ionic liquids, from which 1-hexyl-3-methylimidazolium chloride ([C6MIm][Cl]) has especially good characteristics. A recent report has also revealed that the use of the phosphate system as buffer, at varying concentration and pH, may have a significant role in the chromatographic performance of basic compounds, with effects on both retention and peak shape. In this work, this study has been extended to other three buffer systems (acetate, citrate, and formate), at increasing concentrations and pH 3 and 7, in the presence and absence of [C6MIm][Cl]. The results have been compared with those obtained with the phosphate system. The retention increases by addition of larger concentration of all buffers, in both absence and presence of [C6MIm][Cl]. Without additive, peak performance is also enhanced significantly. This effect is minimal in the presence of [C6MIm][Cl], which yields highly symmetrical peaks at all buffer concentrations, due to an effective blocking of the silanol activity.


Assuntos
Boratos/química , Cromatografia de Fase Reversa/métodos , Imidazóis/química , Acetonitrilas/química , Antagonistas Adrenérgicos beta/análise , Soluções Tampão , Cromatografia Líquida de Alta Pressão/métodos , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Solventes , Água/química
4.
Electron. j. biotechnol ; 12(3): 8-9, July 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-551886

RESUMO

The cellulase enzyme production is a key issue in the enzymatic hydrolysis of lignocellulosic materials. Since fungal morphology influences the productivity of fungal fermentations, it is of major importance to well know the fungal behavior during culture for cellulase production. In this work, the influence of medium supplementation, with different buffer systems at two different concentrations and pH conditions, on the morphology of T. reesei Rut C-30 and cellulase production, was investigated. A medium without buffer was used as control. The results suggest that fungal morphology is significantly dependent on the addition of different buffer systems to the nutrient broth. The mycelial morphology shows a clear transition from clumped to pelleted forms in cultures with variation of buffer systems and concentration. The higher filter paper activity was obtained using 100 mM succinate buffer, at pH 4.8, in the medium supplementation, corresponding to a dispersed mycelial morphology.


Assuntos
Celulases/biossíntese , Celulases/provisão & distribuição , Celulases/síntese química , Trichoderma/enzimologia , Trichoderma/metabolismo , Fermentação , Hidrólise , Fungos/citologia , Fungos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...